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ABSTRACT  
 
This report is a follow on to the report given in DSTO-TN-0449 and considers the derivation of 
the mathematical model for  aerospace vehicles and missile autopilots in state space form. The 
basic equations defining the airframe dynamics are non-linear, however, since the non-
linearities are “structured” (in the sense that the states are of quadratic form) a novel approach 
of expressing this non-linear dynamics in state space form is given. This should provide a 
useful way to implement the equations in a computer simulation program and possibly for 
future application of non-linear analysis and synthesis techniques, particularly for autopilot 
design of aerospace vehicles executing high g-manoeuvres. 

This report also considers a locally linearised state space model that lends itself to better 
known linear techniques of the modern control theory. A coupled multi-input multi-output 
(MIMO) model is derived suitable for both the application of the modern control techniques 
as well as the classical time-domain and frequency domain techniques. The models developed 
are useful for further research on precision optimum guidance and control. It is hoped that the 
model will provide more accurate presentations of missile autopilot dynamics and will be 
used for adaptive and integrated guidance & control of agile missiles. 
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State Space Model for Autopilot Design of 
Aerospace Vehicles  

 
 

Executive Summary  
 
Requirements for next generation guided weapons and other aerospace vehicles, 
particularly with respect to their capability to engage high speed, highly agile targets and 
achieve precision end-game trajectory, have prompted a revision of the way in which the 
guidance and autopilot design is undertaken. This report considers the derivation of the 
mathematical models for aerospace vehicles and missile autopilots in state space form.  
The basic equations defining the airframe dynamics are non-linear, however, since the 
non-linearities are “structured” (in the sense that the states are of quadratic form) a novel 
approach of expressing this non-linear dynamics in state space form is given.  This should 
provide a useful way to implement the equations in a computer simulation program and 
possibly for future application of non-linear analysis and synthesis techniques. 
 
This report which is a follow on report to DSTO-TN-0449, also considers a locally 
linearised state space model that lends itself to better known linear techniques of the 
modern control theory.  A coupled multi-input multi-output (MIMO) model is derived 
suitable for both the application of the modern control techniques as well as the classical 
time-domain and frequency domain techniques. The models developed are useful for 
further research on precision optimum guidance and control. It is hoped that the model 
will provide more accurate presentations of aerospace vehicles autopilot dynamics and 
will be used for adaptive and integrated guidance & control of agile missiles and other 
aerospace vehicles that do not necessarily have symmetric cruciform airframes. 
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1.  Introduction 

Requirements for next generation guided weapons, particularly with respect to their 
capability to engage high speed, highly agile targets and achieve precision end-game 
trajectory, have prompted a revision of the way in which the guidance and autopilot design 
are undertaken. Integrating the guidance and control function is a synthesis approach that is 
being pursued as it allows the optimisation of the overall system performance. This approach 
requires a more complete representation of the airframe dynamics and the guidance system. 
The use of state space model allows the application of modern control techniques such as the 
optimal adaptive control and parameter estimation techniques [10] to be utilised. In this report 
we derive the autopilot model that will serve as a basis for an adaptive autopilot design and 
allow further extension of this to integrated guidance and control system design. 
  
Over the years a number of authors [1-3, 6-9] have considered modelling, analysis and design 
of autopilots for atmospheric flight vehicles including guided missiles. In the majority of the 
published work on autopilot analysis and design, locally linearised versions of the model with 
decoupled airframe dynamics have been considered. This latter simplification arises out of the 
assumption that the airframe and its mass distribution are symmetrical about the body axes, 
and that the yaw, pitch and roll motion about the equilibrium state remain “small”. As a 
result, many of the autopilot analysis and design techniques, considered in open literature, 
use classical control approach, such as: single input/single output transfer-functions 
characterisation of the system dynamics, Bode, Nyquist, root-locus and transient -response 
analysis and synthesis techniques [5, 7]. These techniques are valid for a limited set of flight 
regimes and their extension to cover a wider set of flight regimes and airframe configurations 
requires autopilot gain and compensation network switching. 
 
With the advent of fast processors it is now possible to take a more integrated approach to 
autopilot design. Modern optimal control techniques allow the designer to consider autopilots 
with high-order dynamics (large number of states) with multiple inputs/outputs and to 
synthesise controllers such that the error between the demanded and the achieved output is 
minimised. Moreover, with real-time mechanisation any changes in the airframe 
aerodynamics can be identified (parameter estimation) and compensated for by adaptively 
varying the optimum control gain matrix. This approach should lead to missile systems that 
are able to execute high g-manoeuvres (required by modern guided weapons), adaptively 
adjust control parameters (to cater for widely varying flight profiles) as well as account for 
non-symmetric airframe and mass distributions. Typically, for a missile autopilot, the input is 
the demanded control surface deflection and outputs are the achieved airframe (lateral) 
accelerations and body rates measured about the body axes. Other input/output variables 
(such as: the flight path angle and angle rate or the body angles) can be derived directly from 
lateral accelerations and body rates.  
 
This report considers the derivation of the mathematical model for a missile autopilot in state 
space form. The basic equations defining the airframe dynamics are non-linear, however, 
since the nonlinearities are “structured” (in the sense that the states are of quadratic form) a 
novel approach of expressing this non-linear dynamics in state space form is given. This 
should provide a useful way to implement the equations in a computer simulation program 
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and possibly for future application of non-linear analysis and synthesis techniques. Detailed 
consideration of the quadratic/bilinear type of dynamic systems is given in [4]. 
 
This report which is a follow on report from the previous report [1,2], also considers a locally 
linearised state space model that lends itself to better known linear techniques of the modern 
control theory. A coupled multi-input multi-output (MIMO) model is derived suitable for 
both the application of the modern control techniques as well as the classical time-domain and 
frequency domain techniques. For sake of clarity, Figure 2.1 is a symmetric cruciform missile, 
however the models developed are valid for non axis-symmetric aerospace vehicles.  
Tables A-1.1 to A-1.3 contain the various aerodynamic derivatives and coefficients. 
 
 

2.  State Space Aerodynamics Model 

The airframe, actuation and sensor measurement equations have been derived in detail in 
Appendix A in this section we give the main results that will be used for matrix based 
computation of the state space model. 
 
2.1 Nonlinear Airframe Model 

Conventions and notations for vehicle body axes systems as well as the forces, moments and 
other quantities are shown in Figure 2.1 and defined in Table 2.1.  

 
Figure 2.1 Motion variable notations 

 
The variables shown in Figure 2.1 are defined as: 
m - mass of a vehicle. 

Ixx, Lp 

 
Iyy, Mq 

 Izz, Nr σ 

T 
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α - incidence in the pitch plane. 
β - incidence in the yaw plane. 
λ - incidence plane angle. 
σ - total incidence, such that: tan α = tan σ cos λ, and tan β = tan σ sin λ. 
T – thrust. 
 
Table 2.1: Motion variables 

 
Vehicle Body Axes System 

Roll 
axis 

Pitch 
axis 

Yaw 
axis 

Angular rates p q r 
Component of vehicle velocity along each axis u v w 
Component of aerodynamic forces acting on vehicle along 
each axis 

X Y Z 

Moments acting on vehicle about each axis L M N 
Moments of inertia about each axis Ixx Iyy Izz 
Products of each inertia Iyz Izx Ixy 
Longitudinal and lateral accelerations ax ay az 

Euler angles φ θ ψ 
Gravity along each axis gx gy gz 
Vehicle thrust along the body axis T   
 
Tail Control Configuration: 
 
We shall use the following notation: ξ - aileron deflection; η - elevator deflection; ς - rudder 
deflection. Figure 2.2 defines the control surface convention. Here the control surfaces are 
numbered as shown and the deflections ),,,( 4321 δδδδ  are taken to be positive if clockwise, 
looking outwards along the individual hinge axis. Thus, Aileron deflection: 

)(
4
1

4321 δδδδξ +++= , if all four control surfaces are active; or )(
2
1

31 δδξ += , or 

)(
2
1

42 δδξ +=  if only two surfaces are active. Positive control defection (ξ) causes negative 

roll. Elevator deflection: )(
2
1

31 δδη −= . Positive control deflection (η) causes negative pitch. 

Rudder deflection: )(
2
1

42 δδζ −= . Positive control deflection (ζ) causes negative yaw. 
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Figure 2.2 Control surfaces seen from the rear of a missile 

 
Canard Control Configuration: 
 
For a canard configuration, same convention will be used for control surface deflections; 
however, it is noted that the force and moment coefficients will have opposite signs. Canard 
control is generally not used for roll control. 
 
Euler Equations of Motion 

 
The six equations of motion for a body with six degrees of freedom may be written as [1-3]:  
 

mgTX)vrwqu(m x++=−+&  (2-1) 
mgY)wpurv(m y+=−+&  (2-2) 
mgZ)vpuqw(m x+=+−&  (2-3) 

L)qrp(I)rpq(I)qr(Iqr)II(pI xyzx
22

yzzzyyxx =−++−−+−− &&&  (2-4) 

M)rpq(I)pqr(I)rp(Irp)II(qI yzxy
22

zxxxzzyy =−++−−+−− &&&  (2-5) 

N)pqr(I)qrp(I)pq(Ipq)II(rI zxyz
22

xyyyxxzz =−++−−+−− &&&  (2-6) 

Here 
dt
d)( =⋅  - is the derivative operator. 

Based on the Euler equations above, the nonlinear (quadratic) airframe state space model is 
given by (see equations A-1.1 to A-1.5): 
 

[ ] [ ] [ ] [ ] [ ] [ ]11
30

2
30

1
3 guGxFx

dt
d

++=  (2-7) 

 

+δ1 

+δ2 

+δ3 

+δ4 
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Where: 
 

[ ]
[ ]

[ ]
[ ]T

1
2

1
1

1
3 rqp|wvu

x

x
x =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−= : is a 6x1 linear-state vector. 

 

[ ]
[ ]

[ ]
[ ]T222

2
2

2
1

2
3 rqrqprpqp|wqwpvrvpuruq

x

x
x =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−= : is a 12x1 quadratic-

state vector. 
 

[ ]
[ ]

[ ]
[ ]T

1
2

1
1

1
3 NML|Z~Y~T~X~

u

u
u +=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−= : is 6x1 a vector function of control inputs, forces 

and moments. 
 

[ ] [ ]Tzyx

13

1 000ggg
0

g
g =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−=

×

: is the 6x1 gravity (or disturbance) vector. 

[ ]
[ ] [ ]

[ ] [ ] [ ]⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−−=
−

×

×

0
1

063

630

0
BA|0

|
0|C

F : is a 6x12 state-coefficient matrix.  

  

[ ]
[ ] [ ]

[ ] [ ] ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−=
−

×

××

1
033

3333

0
A|0

|
0|I

G : is a 6x6 input-coefficient matrix.  

 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−
−−

=

zzyzzx

yzyyxy

zxxyxx

0
III
III
III

A : is a 3x3 matrix. 

 

[ ] ( )
( )

( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−−

−
−−−

−
=

0II
II0
IIII

IIII
IIII

II0
B

zxxy

zxxy

yzzzyyyz

yzyyxxxy

xxzzyzzx

xyzx

0  : is a 3x6 matrix. 
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[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
−=

000
010
101

1-01
010
000

C0 : is a 3x6 matrix. 

 
Subscripts under [I] and [0] matrices denote the matrix dimensions. Generally, not all state 
variables in the state equation are accessible or measurable. The vehicle angular rate 
components (roll rate p, pitch rate q, and yaw rate r) and the acceleration components (ax, ay, 
az) are commonly available and can be measured using the IMU. 
 
2.2  Body Acceleration Model 

Equations for the vehicle actual body accelerations and body rates are derived in Appendix A 
equations (A-1.6) to (A-1.11). These equations allow position offsets from c.g for observing the 
body accelerations. The acceleration components at point O (where O is at a distance of dx, dy 
and dz from the central point of gravity, c.g., along x-, y- and z-axis, respectively), may be 
written as: 
 

)qpr(d)rpq(d)rq(drvqwua zy
22

xx &&& ++−++−−+=  

)qpr(d)rpq(d)rq(dgT~X~ zy
22

xx && ++−++−++=  (2-8)  
 

)pqr(d)rp(d)rpq(dpwruva z
22

yxy &&& −++−++−+=  

 )pqr(d)rp(d)rpq(dgY~ z
22

yxy && −++−+++=  (2-8) 
 

)qp(d)pqr(d)qpr(dqupvwa 22
zyxz +−++−+−+= &&&  

)qp(d)pqr(d)qpr(dgZ~ 22
zyxz +−++−++= &&  (2-9) 

After some matrix manipulations, the body acceleration model may be written as (see 
equations (A-1.6) to (A-1.11):  
 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]1
0

1
30

2
30

1
30

1
3 gMuLxKxJy +++=  (2-10) 

 
Where: 
 

[ ] [ ] T
zyx

1
1 aaay = : is a 3x1 body acceleration vector. 

 
[ ] [ ] [ ]T1

2
1
2

rqpxy == : is a 3x1 body rate vector 

 
[ ] [ ] [ ][ ] T1

2
1
1

1
3

y|yy = : is a 6x1 output vector. 
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[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

0dd100
d0d010
dd0001

D

xy

xz

yz

0 : is a 3x6 accelerometer position ‘offset’ matrix. 

 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−−
−−−

=
0ddd0d000101
dd00dd010010
d0ddd0101000

D

yzxz

yzxy

xxzy

1 : is a 3x12 accelerometer 

position ‘offset’ matrix. 
 

[ ]
[ ]

[ ]⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−−−−−−−=

××

×

3333

63

0
I|0

0
J : is a 6x6 linear-state output coefficient matrix. 

 

[ ]
[ ]

[ ] ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−−−−

+
=

×123

100

0
0

DFD
K : is a 6x12 quadratic-state output coefficient matrix. 

 

[ ]
[ ]

[ ] ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−−−−=

×63

00

0
0

GD
L : is a 6x6 coefficient matrix. 

 

[ ]
[ ]

[ ]⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−=

×63

0

0
0

D
M : is a 6x6 output coefficient matrix. 

 
Note: equation (2-10) represents the actual accelerations and body rates outputs; these have to 
be measured using a body fixed IMU (accelerometers and gyros). 
 
2.3 Accelerometer Dynamics Model 

The dynamic model for the accelerometers is derived in Appendix A, equations (A-1.12) to  
(A-1.17). A second order linear dynamics is assumed for the accelerometer model. 
 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]1
4

1
33

2
32

1
40

1
4 gWuWxWxWx

dt
d

+++=  (2-11) 

 
Where: 
 

[ ]
T

zozoyoyoxoxo
1
4 aaaaaax

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

•••
: is a 6x1 accelerometer state vector. 
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[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−

=

zz
2
z

yy
2
y

xx
2
x

0

20000
100000
00200
001000
00002
000010

W

ωζω

ωζω

ωζω

: is a 6x6 coefficient matrix 

containing accelerometer parameters. 
 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2
z

2
y

2
x

1

00
000
00
000
00
000

W

ω

ω

ω

: is a 6x3 coefficient matrix containing accelerometer parameters. 

 
[ ] [ ]110012 DWFDWW += : is a 6x12 coefficient matrix. 
 
[ ] [ ]0013 GDWW = : is a 6x6 coefficient matrix. 
 
[ ] [ ]014 DWW = : is a 6x6 coefficient matrix. 
 
The accelerometer measurement model is given by (see equation (A-1.18)): 
 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]1
na

1
sa

1
da

1
ba

1
41

1
4 vvvvxJz ++++=  (2-12) 

 
Where: 
 

[ ] [ ]Tmzmymx
1
4 aaaz = : is a 3x1 accelerometer measurement vector. 

 
[ ] [ ]Tbzbybx
1
ba vvvv = : is a 3x1 accelerometer bias error vector. 

 
[ ] [ ]Tdzdydx
1
da vvvv = : is a 3x1 accelerometer drift error vector. 

 
[ ] [ ]Tszsysx
1
sa vvvv = : is a 3x1 accelerometer scale factor error vector. 

 
[ ] [ ]Tnznynx
1
na vvvv = : is a 3x1 accelerometer noise error vector. 
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[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

010000
000100
000001

J1 : is a 3x6 matrix. 

 
 
2.4 Gyro Dynamics Model 

The dynamic model for the gyros is derived in Appendix A, equations (A-1.19) to (A-1.21).  
A second order linear dynamics is assumed for the gyro model. 
 

[ ] [ ] [ ] [ ] [ ]1
37

1
55

1
5 xWxWx

dt
d

+=  (2-13) 

 
Where: 

[ ]
T

oooooo
1

5 rrqqppx
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

•••
: is a 6x1 gyro state vector. 

 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−

=

rr
2
r

qq
2
q

pp
2
p

5

20000
100000
00200
001000
00002
000010

W

ωζω

ωζω

ωζω

: is a 6x6 coefficient matrix 

containing gyro parameters. 
 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2
r

2
q

2
p

6

00
000
00
000
00
000

W

ω

ω

ω

: is a 6x3 coefficient matrix containing gyro parameters. 

 
[ ] [ ]6367 W|0W ×= : is a 6x6 coefficient matrix. 
 
The gyro measurement model is given by (see equation (A-1.22)): 
 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]1
ng

1
sg

1
dg

1
bg

1
52

1
5 vvvvxJz ++++=  (2-14) 
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Where: 
 

[ ] [ ]Tmmm
1
4 rqpz = : is a 3x1 gyro measurement vector. 

 
[ ] [ ]Tbrbqbp
1
bg vvvv = : is a 3x1 gyro bias error vector. 

 
[ ] [ ]Tdrdqdp
1
dg vvvv = : is a 3x1 gyro drift error vector. 

 
[ ] [ ]Tsrsqsp
1
sg vvvv = : is a 3x1 gyro scale factor error vector. 

 
[ ] [ ]Tnrnqnp
1
ng vvvv = : is a 3x1 gyro noise error vector. 

 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

010000
000100
000001

J2 : is a 3x6 matrix. 

 
 
2.5 Actuation Servo Model 

The dynamic model for the actuation system is derived in Appendix A, equations (A-1.23) to 
(A-1.28). A second order linear dynamics is assumed for the gyro model. 
 
This equation is of the form: 
 

[ ] [ ] [ ] [ ] [ ]1
41

1
60

1
6 uVxVx

dt
d

+=  (2-15) 

 
Where: 

[ ]
T

oooooo
1

6x
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

•••
ζζηηξξ : is a 6x1 state vector. 

 
[ ] [ ]Tiiii
1
4u ζηξα == : is a 3x1 control (servo actuator) input vector. 
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[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−

=

ζζζ

ηηη

ξξξ

ωζω

ωζω

ωζω

20000
100000
00200
001000
00002
000010

V

2

2

2

0 : is a 6x6 servo actuator coefficient 

matrix. 
 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2

2

2

1

00
000
00
000
00
000

V

ζ

η

ξ

ω

ω

ω

: is a 6x3 servo input coefficient matrix. 

 

If the actuator system noise is included in the model then the actual output from the actuator 
servo may be written as: 

[ ] [ ] [ ] [ ] [ ] [ ]1
s

1
41

1
60

1
6 n

uVxVx
dt
d ν++=  (2-16) 

 
We may also write for the actuator output: 
 

[ ] [ ] [ ] [ ]1
62

T
ooo

1
6 xVy == ςηξ  (2-17) 

 
Where:  
 

[ ] [ ]T1
s nnnnnnn

vvvvvvv ζζηηξξ &&&= : is a 6x1 actuator servo noise error vector. 

 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

010000
000100
000001

V2 : is a 3x6 matrix. 

 
Note that: 
 

[ ] ( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) [ ] [ ] [ ] [ ]( )1

62
1
3

1
3ooo

T1
3

xV,x,xf,,,w,v,u,r,q,p,w,v,uf

..N..M..L..Z~..Y~..X~u

&&&& ==

=

ζηξ
 (2-18) 
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2.6  Overall Nonlinear (Quadratic) Airframe Model including IMU 

Equations (A-1.5), (A-1.17), (A-1.21) and (A-1.26) combine to give us an overall airframe, IMU 
and actuator dynamic model; this equation is of the form: 
 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]( ) [ ] [ ] [ ] [ ] [ ] [ ]1
s2

1
1

1
42

1
31

2
32

1
71

1
7 n

HgHuG..uGxFxFx
dt
d ν+++++=  (2-19) 

 
Where: 
 

[ ] [ ] [ ] [ ] [ ]
TT1

6
T1

5
T1

4
T1

3
1

7 x|x|x|xx ⎥⎦
⎤

⎢⎣
⎡= : is a 24 x1 state vector. 

 

[ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−−−−−

−−−−−−−−−−−−

−−−−−−−−−−−−

=

×××

××

×××

××××

0666666

665667

6666066

66666666

1

V|0|0|0
|||

0|W|0|W
|||

0|0|W|0
|||

0|0|0|0

F : is a 24x24 coefficient matrix. 

 
[ ] [ ] [ ] [ ] [ ][ ]T

612612
T

2
T

02 0|0|W|FF ××= : is a 24x12 coefficient matrix. 
 

[ ] [ ] [ ] [ ] [ ][ ]T6666
T

3
T

01 0|0|W|GG ××= : is a 24x6 coefficient matrix. 
 

[ ] [ ] [ ] [ ] [ ][ ]TT
16363632 V|0|0|0G ×××= : is a 24x3 coefficient matrix. 

 

[ ] [ ] [ ] [ ] [ ][ ]T6666
T

4661 0|0|W|IH ×××= : is a 24x6 coefficient matrix. 
 
[ ] [ ] [ ] [ ] [ ][ ]T666666662 I|0|0|0H ××××= : is a 24x6 coefficient matrix. 
 
A block diagram of the decomposed version (derived by considering the sub-matrices) of the 
overall model is given in Figure A-1.1. See appendix section 3. 
 
2.7  The Measurement Model 

Equation (2-12) and (2-14) may be combined to give the overall airframe and IMU (Gyros, 
Accelerometers) measurement model (see equation (A-1.30)): 
 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]1
n

1
s

1
d

1
b

1
76

1
7 vvvvxJz ++++=  (2-20) 
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Where: 
 

[ ] [ ] [ ] [ ] T
mmmzyx

TT1
5

T1
4

1
7 rqpaaaz|zz

mmm
=⎥⎦

⎤
⎢⎣
⎡= : is a 6x1 IMU (gyro + 

accelerometer) measurement vector. 
 

[ ] [ ] [ ] [ ]T
rqpzyx

TT1
g

T1
a

1
b bbbbbbbb

vvvvvvv|vv =⎥⎦
⎤

⎢⎣
⎡= : is a 6x1 IMU bias error vector. 

 

[ ] [ ] [ ] [ ]T
rqpzyx

TT1
g

T1
a

1
d dddddddd

vvvvvvv|vv =⎥⎦
⎤

⎢⎣
⎡= : is a 6x1 IMU drift error vector. 

 

[ ] [ ] [ ] [ ]T
rqpzyx

TT1
g

T1
a

1
s ssssssss

vvvvvvv|vv =⎥⎦
⎤

⎢⎣
⎡= : is a 6x1 IMU scale factor error 

vector. 
 

[ ] [ ] [ ] [ ]T
rqpzyx

TT1
g

T1
a

1
n nnnnnnnn

vvvvvvv|vv =⎥⎦
⎤

⎢⎣
⎡= : is a 6x1 IMU noise error vector. 

 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−−−−−−−−−−=

×××

×××

6326363

6363163

6
0|J|0|0

|||
0|0|J|0

J : is a 6x24 matrix. 

 
 

3. Linearised State Space Airframe Model 

The linearised state space model is derived in Appendix A, section 2 (equations (A-2.1) to  

(A-2.9). It is assumed that X~ , Y~ , Z~ , L , M  and N are functions of ςηξ ,,w,v,u,r,q,p,w,v,u
...

 
and first order linearization of these nominal values u0, v0, w0, p0, q0, r0, ξ0, η0 and ς0, are 
considered. The linearised airframe model is given by: 
 
The ‘small’ perturbation model for the quadratic dynamic model of equation (A-1.29) may be 
written as (see equation (A-2.5)): 
 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]1
s2

1
42

1
331

1
621

1
30142

1
71

1
7

n
HuG

x
dt
dEGxEGxEGEFxFx

dt
d

νΔΔ

ΔΔΔΔΔ

++

++++=
 (3-1) 

 
This equation will be referred to as the decomposed form (see Appendix A section 3) 
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Where: 
 

[ ]

[ ]

[ ]

[ ]

[ ] ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−−

−−−−−−−−−
+

−−−−−−−−−
+

=+

×

×

66

66

0342

0040

0142

0

0

EWEW

EGEF

EGEF ; [ ]

[ ]

[ ]

[ ]

[ ] ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−

−−−−

−−−−

=

×

×

66

66

23

20

21

0

0

EW

EG

EG ; [ ]

[ ]

[ ]

[ ]

[ ] ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−

−−−−

−−−−

=

×

×

66

66

33

30

31

0

0

EW

EG

EG  

 
Equation (3-1) may be written in a compact form as: 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]1
s3

1
43

1
75

1
7 n

HuGxFx
dt
d νΔΔΔΔ ++=  (3-2) 

 
Where: 
 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

rqpwvu

rqpwvu

rqpwvu

rqpwvu

rqpwvu

rqpwvu

0

NNNNNN
MMMMMM
LLLLLL
Z~Z~Z~Z~Z~Z~
Y~Y~Y~Y~Y~Y~
X~X~X~X~X~X~

E : is a 6x6 aero-derivative matrix. 

 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

ςηξ

ςηξ

ςηξ

ςηξ

ςηξ

ςηξ

NNN
MMM
LLL
Z~Z~Z~
Y~Y~Y~
X~X~X~

E1 : is a 6x3 control-derivative matrix. 

 
[ ] [ ]212 VEE = : is a 6x6 matrix. 
 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

000NNN
000MMM
000LLL
000Z~Z~Z~
000Y~Y~Y~
000X~X~X~

E

wvu

wvu

wvu

wvu

wvu

wvu

3

&&&

&&&

&&&

&&&

&&&

&&&

: is a 6x6 aero-derivative matrix. 
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[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0
0

0

0

0

4

r2
q
0
p
0
0
0
0
v
0
u
0

0
r
q2
0
p
0

w
0
0
0
0
u

0
0
0
r
q
p2
0

w
0
v
0
0

0
0
0
0
0
0
q
p
0
0
0
0

0
0
0
0
0
0
0
0
r
p
0
0

0
0
0
0
0
0
0
0
0
0
r
q

E : is a 12x6 matrix of steady state values. 

 
[ ] [ ] [ ]6246246243124243 0|0|0|EGIF ×××× −= : is a 24x24 coefficient matrix. 
 
[ ] [ ] [ ]624624624014214 0|0|0|EGEFFF ×××++= : is a 24x24 coefficient matrix. 
 
[ ] [ ] [ ] :FFF 4

1
35

−=  is a 24x24 coefficient matrix. 
 
[ ] [ ] [ ]2

1
33 GFG −= : is a 24x3 coefficient matrix. 

 
[ ] [ ] [ ]2

1
33 HFH −= : is a 24x3 coefficient matrix. 

 
 
3.1  Linearised Measurement Model 

Small perturbation model of the measurement model (see equation (A-1.30) may be written as: 
 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]1
n

1
s

1
b

1
b

1
76

1
7 vvvvxJz ΔΔΔΔΔΔ ++++=  (3-3) 

Δ : denotes small perturbation about nominal values 
 
Finally, linearising the output equation (2-10) (see also equation (A-1.11)) gives us:  
 

[ ] [ ] [ ] [ ] [ ]1
30

1
37

1
3

uLxJy ΔΔΔ +=  (3-4) 

 
Where: 
[ ] [ ] :EKJJ 4007 += is a 6x6 coefficient matrix. 
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4.  Conclusions 

Both the non-linear and linearised autopilot models have been derived in this report. The 
state-space model of a missile autopilot needs to be validated by comparing the model with 
the other published results, and through both open and closed-loop systems simulation. The 
non-linear dynamics model presented as structural quadratic algebraic system is novel and 
will be used for developing non-linear control techniques suitable for missile systems high g- 
manoeuvres and operating of a range of aerodynamics conditions. The models developed in 
this report are useful for applications to precision optimum and adaptive guidance and 
control. It is hoped that the higher order model with motion and inertial coupling will provide 
more accurate representation of autopilot dynamics particularly for non axis-symmetric 
airframes that could be used for adaptive and integrated guidance & control of missiles such 
as air breathing supersonic and hypersonic vehicles.  
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Appendix A:   

A.1. Non-linear (Quadratic) Airframe and IMU Dynamics 

Equations (2-1) to (2-3) represent the force equations of a generalised rigid body and describe 
the translational motion of its centre of gravity (c.g) since the origin of the vehicle body axes is 
assumed to be co-located with the body c.g. Equations (2-4) to (2-6) represent the moment 
equations of a generalised rigid body and describe the rotational motion about the body axes 
through its c.g. Separating the derivative terms and after some algebraic manipulation, 
Equations (2-1) to (2-3) may be written in a vector form as: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ +
+

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤−

⎢
⎢
⎢

⎣

⎡

−
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

z

y

x

g
g
g

Z~
Y~

T~X~

wq
wp
vr
vp
ur
uq

000
010
101

101
010
000

w
v
u

dt
d

 (A-1.1)  

 
Where: 
 

m
TT~;

m
ZZ~;

m
YY~;

m
XX~ ==== . 

 
Note: that in the above equations, the states (u, v, w, p, q, r) appear as a quadratic form 
expression.  
 
In matrix notation equations (2-4) to (2-6) (section.2) may be written as: 
 

[ ] [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

N
M
L

r
qr
q
pr
pq
p

B
r
q
p

dt
dA

2

2

2

00

 (A-1.2)  

 
Here again, the states (p,q,r) appear as a quadratic form expression.  
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Where: 
 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−
−−

=

zzyzzx

yzyyxy

zxxyxx

0
III
III
III

A : is a 3x3 matrix. 

 

[ ] ( )
( )

( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−−

−
−−−

−
=

0II
II0
IIII

IIII
IIII

II0
B

zxxy

zxxy

yzzzyyyz

yzyyxxxy

xxzzyzzx

xyzx

0 : is a 3x6 matrix. 

 
 
Equation (A-1.2) may also be written as: 
 

[ ] [ ] [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

N
M
L

A

r
qr
q
pr
pq
p

BA
r
q
p

dt
d 1

0

2

2

2

0
1

0

 (A-1.3)  

 
Where: 
 

[ ]
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−++

+−+

++−

=−

2
xyyyxxzxxyyzxxzxyyxyyz

xyzxyzxx
2

zxzzxxzxyzxyzz

zxyyxyyzzxyzxyzz
2

yzzzyy
1

0

IIIIIIIIIII

IIIIIIIIIII

IIIIIIIIIII
1A
Δ

: a 3x3 matrix. 

 
( )xyzxyz

2
xyzz

2
zxyy

2
yzxxzzyyxx III2IIIIIIIII −−−−=Δ . 

 
The selection of the particular order of the terms in the ‘quadratic-state’ vectors 

[ ]Twqwpvrvpuruq of Equation (A-1.1) and [ ]T222 rqrqprpqp of Equation (A-1.2) is made on 
the basis of retaining lexicographic order of the variables. Combining Equations (A-1.1) and 
(A-1.3), we obtain the full 6th order rigid body dynamics state equations as: 
 

[ ]

[ ]

[ ] [ ]

[ ] [ ] [ ]

[ ]

[ ]

[ ] [ ]

[ ] [ ]

[ ]

[ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎣

⎡
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−

×

××

−
×

×

0

g

u

u

A|0
|

0|I

x

x

BA|0
|

0|C

x

x

dt
d

1
2

1
1

1
033

3333

2
2

2
1

0
1

063

630

1
2

1
1

   

   
   
 (A-1.4) 
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Where: 
 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
−=

000
010
101

1-01
010
000

C0 : is a 3x6 matrix. 

 
 [ ] [ ]T1

1 wvux = : is a 3x1 linear state vector. 
 

[ ] [ ]T1
2 rqpx = : is a 3x1 linear state vector. 

 
[ ] [ ]T2
1 wqwpvrvpuruqx = : is a 6x1 quadratic state vector. 

 
[ ] [ ]T2222
2 rqrqprpqpx = : is a 6x1 quadratic state vector. 

 
[ ] [ ]T1
1 Z~Y~T~X~u += : is a 3x1 ‘force’ input vector. 

 
[ ] [ ]T1
2 NMLu = : is a 3x1 ‘moment’ input vector. 

 
[ ]Tzyx gggg = : is a 3x1 gravity vector. 

 
Note: superscript [1] is used to indicate that the state vector is linear; while superscript [2] is 
used to indicate that the state vector is a quadratic/bilinear form. 
 
 
Equation (A-1.4) may be written in a compact form as: 
 

[ ] [ ] [ ] [ ] [ ] [ ]11
30

2
30

1
3 guGxFx

dt
d

++=  (A-1.5) 

 
 
Where: 
 

[ ]
[ ]

[ ]
[ ]T

1
2

1
1

1
3 rqp|wvu

x

x
x =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−= : is a 6x1 linear-state vector. 
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[ ]
[ ]

[ ]
[ ]T222

2
2

2
1

2
3 rqrqprpqp|wqwpvrvpuruq

x

x
x =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−= : is a 12x1 quadratic-

state vector. 
 

[ ]
[ ]

[ ]
[ ]T

1
2

1
1

1
3 NML|Z~Y~T~X~

u

u
u +=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−= : is 6x1 a vector function of control inputs, forces 

and moments. 
 

[ ] [ ]Tzyx

13

1 000ggg
0

g
g =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−=

×

: is the 6x1 gravity (or disturbance) vector. 

 

[ ]
[ ] [ ]

[ ] [ ] [ ]⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−−=
−

×

×

0
1

063

630

0
BA|0

|
0|C

F : is a 6x12 state-coefficient matrix.  

  

[ ]
[ ] [ ]

[ ] [ ] ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−=
−

×

××

1
033

3333

0
A|0

|
0|I

G : is a 6x6 input-coefficient matrix.  

 
Subscripts under [I] and [0] matrices denote the matrix dimensions. 
 
 
A.1.1 Body Acceleration Model 

Generally, not all state variables in the state equation are accessible or measurable. The 
common accessible measurement variables, in most missiles or airplanes, are the angular rate 
components (roll rate p, pitch rate q, and yaw rate r) and the acceleration components (ax, ay, 
az). The acceleration components at point O (where O is at a distance of dx, dy and dz from the 
central point of gravity, c.g., along x-, y- and z-axis, respectively), may be written as [11]: 
 

)qpr(d)rpq(d)rq(drvqwua zy
22

xx &&& ++−++−−+=  

)qpr(d)rpq(d)rq(dgT~X~ zy
22

xx && ++−++−++=  (A-1.6)  
 

)pqr(d)rp(d)rpq(dpwruva z
22

yxy &&& −++−++−+=  

 )pqr(d)rp(d)rpq(dgY~ z
22

yxy && −++−+++=  (A-1.7) 
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)qp(d)pqr(d)qpr(dqupvwa 22
zyxz +−++−+−+= &&&  

)qp(d)pqr(d)qpr(dgZ~ 22
zyxz +−++−++= &&  (A-1.8) 

 
 
 
Or in matrix form:  

[ ] [ ]
[ ]

[ ]
[ ]

[ ]

[ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−==
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2
2

2
1

1
1
2

1
1

0
1

1
z

y

x

x

x
D

x

x

dt
dDy

a
a
a

 (A-1.9) 

 
 
Where: 
 

[ ] [ ] T
zyx

1
1 aaay = : is a 3X1 body acceleration vector. 

 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

0dd100
d0d010
dd0001

D

xy

xz

yz

0 : is a 3x6 accelerometer ‘offset’ matrix. 

 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−−
−−−

=
0ddd0d000101
dd00dd010010
d0ddd0101000

D

yzxz

yzxy

xxzy

1 : is a 3x12 accelerometer 

‘offset’ matrix. 
 

Substituting from equation (A-1.5) for the [ ]..
dt
d  term in the above equation gives us:  

 

[ ] [ ]
[ ]

[ ]
[ ]

[ ]

[ ]
[ ]

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−+=
0

g
D

u

u
GD

x

x
DFDy 0

1
2

1
1

00
2

2

2
1

100
1

1  

 
[ ] [ ] [ ] [ ] [ ] [ ] [ ]1

0
1
300

2
3100

1
1 gDuGDxDFDy +++=  (A-1.10) 

 
Now, the expression for the body rates is: 
 

[ ] [ ] [ ]T1
2

1
2 rqpxy == : is a 3X1 body rate vector. 
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Combining this with equation (A-1.10) gives us: 
 

[ ]

[ ]

[ ]

[ ]
[ ]

[ ]

[ ]
[ ]

[ ]

[ ]
[ ]

[ ]

[ ]
[ ]1

63

0
1
3

63

00
2
3

123

100
1
3

3333

63

1
2

1
1

g
0

D
u

0

GD
x

0

DFD
x

I|0

0

y

y

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−−−−−

+
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−−−−−−−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

×××××

×

 

 
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]1

0
1
30

2
30

1
30

1
3 gMuLxKxJy +++=  (A-1.11) 

 
 
Where: 
 

[ ]
[ ]

[ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−=
1
2

1
11

3
y

y
y : is a 6x1 output vector. 

 

[ ]
[ ]

[ ]⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−−−−−−−=

××

×

3333

63

0
I|0

0
J : is a 6x6 linear-state output coefficient matrix. 

 

[ ]
[ ]

[ ] ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−−−−−−−

+
=

×

×

123

123100

0
0

DFD
K : is a 6x12 quadratic-state output coefficient matrix. 

 

[ ]
[ ]

[ ] ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−−−−=

×

×

63

6300

0
0

GD
L : is a 6x6 coefficient matrix. 

 

[ ]
[ ]

[ ] ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−−=

×

×

63

630

0
0

D
M : is a 6x6 output coefficient matrix. 

 
Note: equation (A-1.11) represents the actual accelerations and body rates outputs; these have 
to be measured using a body fixed IMU (accelerometers and gyros). 
 
 
A.1.2  Accelerometer and Gyro Dynamics 

Let us assume a second order dynamics for the accelerometers and gyros respectively; thus: 

( ) z,y,x;
s2sa

a
22

2o =
++

= α
ωωζ

ω

ααα

α

α

α  (A-1.12) 
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( ) r,q,p;
s2s 22

2
o =

++
= μ

ωωζ

ω
μ
μ

μμμ

μ  (A-1.13) 

 
( )ζω , : denote the sensor natural frequency and the damping factor respectively. Subscript ‘o’ 
denote output values, and subscripts ( )z,y,x  and ( )r,q,p  denote accelerations and body rates 
measured by accelerometer and gyro orthogonal triads respectively. 
 
 
A.1.3 A.1.3 Accelerometer Dynamics 

In state space form equations for the accelerometer may be written as: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

•

•

•

•

•

•

z

y

x

2
z

2
y

2
x

zo

zo

yo

yo

xo

xo

zz
2
z

yy
2
y

xx
2
x

zo

zo

yo

yo

xo

xo

a
a
a

00
000
00
000
00
000

a

a
a

a
a

a

20000
100000
00200
001000
00002
000010

a

a
a

a
a

a

dt
d

ω

ω

ω

ωξω

ωζω

ωζω

  (A-1.14) 

Where: z,y,x;a
dt
da oo ==

•
ααα  

This equation is of the form: 
 

[ ] [ ] [ ] [ ] [ ]1
11

1
40

1
4 yWxWx

dt
d

+=  (A-1.15) 

 
 
Where: 
 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−

=

zz
2
z

yy
2
y

xx
2
x

0

20000
100000
00200
001000
00002
000010

W

ωζω

ωζω

ωζω

: is a 6x6 coefficient matrix 

containing accelerometer parameters. 
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[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2
z

2
y

2
x

1

00
000
00
000
00
000

W

ω

ω

ω

: is a 6x3 coefficient matrix containing accelerometer parameters. 

[ ]
T

zozoyoyoxoxo
1
4 aaaaaax

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

•••
: is a 6x1 accelerometer state vector. 

 
Substituting for [ ]1

1
y  from equation (A-1.10) into equation (A-1.15), we get: 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]1
01

1
3001

2
311001

1
40

1
4 gDWuGDWxDWFDWxWx

dt
d

++++=  (A-1.16) 

 
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]1

4
1
33

2
32

1
40

1
4 gWuWxWxWx

dt
d

+++=  (A-1.17) 

 
 
Where: 
 
[ ] [ ]110012 DWFDWW += : is a 6x12 coefficient matrix. 
 
[ ] [ ]0013 GDWW = : is a 6x6 coefficient matrix. 
 
[ ] [ ]014 DWW = : is a 6x6 coefficient matrix. 
 
The measurement model is given by: 
 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]1
a

1
a

1
a

1
a

1
41

1
4 nsdb

vvvvxJz ++++=  (A-1.18) 

 
Where: 
 

[ ] [ ]Tzyx
1
4 mmm

aaaz = : is a 3x1 accelerometer measurement vector. 

 
[ ] [ ]Tzyx
1

a bbbb
vvvv = : is a 3x1 accelerometer bias error vector. 

 
[ ] [ ]Tzyx
1

a dddd
vvvv = : is a 3x1 accelerometer drift error vector. 

 
[ ] [ ]Tzyx
1
a ssss

vvvv = : is a 3x1 accelerometer scale factor error vector. 
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[ ] [ ]Tzyx
1
a nnnn

vvvv = : is a 3x1 accelerometer noise error vector. 

 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

010000
000100
000001

J1 : is a 3x6 matrix. 

 
 
A.1.4 Gyro Dynamics 

Similarly, state space form equations for the gyros may be written as: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

•

•

•

•

•

•

r
q
p

00
000
00
000
00
000

r

r
q

q
p

p

20000
100000
00200
001000
00002
000010

r

r
q

q
p

p

dt
d

2
r

2
q

2
p

o

o

o

o

o

o

qq
2
q

qq
2
q

pp
2
p

o

o

o

o

o

o

ω

ω

ω

ωζω

ωζω

ωζω

 (A-1.19) 
 
 
Where: 

r,q,p;
dt
d

oo ==
•

μμμ   

 
Equation (A-1.19) is of the form: 
 

[ ] [ ] [ ] [ ] [ ]1
26

1
55

1
5 xWxWx

dt
d

+=  (A-1.20) 

 
[ ] [ ] [ ] [ ] [ ]1

3636
1

55
1

5 xW|0xWx
dt
d

×+=  

  
[ ] [ ] [ ] [ ] [ ]1

37
1
55

1
5 xWxWx

dt
d

+=  (A-1.21) 

 
 
Where: 

[ ]
T

oooooo
1

5 rrqqppx
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

•••
: is a 6x1 gyro state vector. 

 
[ ] [ ] [ ]T1

2
1
2 rqpyx === ω  
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[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−

=

rr
2
r

qq
2
q

pp
2
p

5

20000
100000
00200
001000
00002
000010

W

ωζω

ωζω

ωζω

: is a 6x6 coefficient matrix 

containing gyro parameters. 
 
 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2
r

2
q

2
p

6

00
000
00
000
00
000

W

ω

ω

ω

: is a 6x3 coefficient matrix containing gyro parameters. 

 
[ ] [ ]6367 W|0W ×= : is a 6x6 coefficient matrix. 
 
The measurement model is given by: 
 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]1
g

1
g

1
g

1
g

1
52

1
5 nsdb

vvvvxJz ++++=  (A-1.22) 

 
 
Where: 
 

[ ] [ ]Tmm
1
4 rqpz

m
= : is a 3x1 gyro measurement vector. 

 
[ ] [ ]Trqp
1
g bbbb

vvvv = : is a 3x1 gyro bias error vector. 

 
[ ] [ ]Trqp
1
g dddd

vvvv = : is a 3x1 gyro drift error vector. 

 
[ ] [ ]Trqp
1
g ssss

vvvv = : is a 3x1 gyro scale factor error vector. 

 
[ ] [ ]Trqp
1
g nnnn

vvvv = : is a 3x1 gyro noise error vector. 

 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

010000
000100
000001

J2 : is a 3x6 matrix. 



DSTO-TR-1990 
 

 
29 

A.1.5 Actuation Servo Model 

Let us assume a second order dynamics for the actuators, that is: 

( ) ζηξα
ωωζ

ω
α
α

ααα

α ,,;
s2s 22

2

i

o =
++

=  (A-1.23) 

 
( )αα ζω , : denote the sensor natural frequency and the damping factor respectively; subscript 
‘i’ denotes the servo (control) input value (servo demand), and subscripts ( )ζηξ ,,  denote roll, 
pitch, and yaw outputs from the servo. 
 
In state space form equations for the actuation system model may be written as: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

•

•

•

•

•

•

i

i

i

2

2

2

o

o

o

o

o

o

2

2

2

o

o

o

o

o

o

00
000
00
000
00
000

20000
100000
00200
001000
00002
000010

dt
d

ζ
η
ξ

ω

ω

ω

ζ

ζ
η

η
ξ

ξ

ωζω

ωζω

ωζω

ζ

ζ
η

η
ξ

ξ

ζ

η

ξ

ζζζ

ηηη

ξξξ

  (A-1.24) 
 
Where: 

ζηξααα ,,;
dt
d

==
•

 

 
This equation is of the form: 
 

[ ] [ ] [ ] [ ] [ ]1
41

1
60

1
6 uVxVx

dt
d

+=  (A-1.25) 

 
 
Where: 

[ ]
T

oooooo
1

6x
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

•••
ζζηηξξ : is a 6x1 state vector. 

 
[ ] [ ]Tiiii
1
4u ζηξα == : is a 3x1 control (servo actuator) input vector. 
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[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−

=

ζζζ

ηηη

ξξξ

ωζω

ωζω

ωζω

20000
100000
00200
001000
00002
000010

V

2

2

2

0 : is a 6x6 servo actuator coefficient 

matrix. 
 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2

2

2

1

00
000
00
000
00
000

V

ζ

η

ξ

ω

ω

ω

: is a 6x3 servo input coefficient matrix. 

If the actuator system noise is included in the model then the actual output from the actuator 
servo may be written as: 
 

[ ] [ ] [ ] [ ] [ ] [ ]1
s

1
41

1
60

1
6 n

uVxVx
dt
d ν++=  (A-1.26) 

 
We may also write for the actuator output: 

[ ] [ ] [ ] [ ]1
62

T
ooo

1
6 xVy == ςηξ  (A-1.27) 

 
Where:  

[ ] [ ]T1
s nnnnnnn

vvvvvvv ζζηηξξ &&&= : is a 6x1 actuator servo noise error vector. 

 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

010000
000100
000001

V2 : is a 3x6 matrix. 

 
Note that: 
 

[ ] ( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) [ ] [ ] [ ] [ ]( )1

62
1
3

1
3ooo

T1
3

xV,x,xf,,,w,v,u,r,q,p,w,v,uf

..N..M..L..Z~..Y~..X~u

&&&& ==

=

ζηξ
 (A-1.28) 

 
 
A.1.6 Non-linear Airframe, IMU and Actuator Dynamic 

We can now combine equations (A-1.5), (A-1.17), (A-1.21) and (A-1.26) to give us an overall 
airframe, IMU and actuator dynamic model; this equation is of the Form: 
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[ ] [ ] [ ] [ ] [ ] [ ] [ ]( ) [ ] [ ] [ ] [ ] [ ] [ ]1

s2
1

1
1
42

1
31

2
32

1
71

1
7 n

HgHuG..uGxFxFx
dt
d ν+++++=  (A-1.29) 

 
 
Where: 
 

[ ] [ ] [ ] [ ] [ ]
TT1

6
T1

5
T1

4
T1

3
1

7 x|x|x|xx ⎥⎦
⎤

⎢⎣
⎡= : is a 24 x1 state vector. 

 

[ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−−−−−

−−−−−−−−−−−−

−−−−−−−−−−−−

=

×××

××

×××

××××

0666666

665667

6666066

66666666

1

V|0|0|0
|||

0|W|0|W
|||

0|0|W|0
|||

0|0|0|0

F : is a 24x24 coefficient matrix. 

 
[ ] [ ] [ ] [ ] [ ][ ]T

612612
T

2
T

02 0|0|W|FF ××= : is a 24x12 coefficient matrix. 
 

[ ] [ ] [ ] [ ] [ ][ ]T6666
T

3
T

01 0|0|W|GG ××= : is a 24x6 coefficient matrix. 
 

[ ] [ ] [ ] [ ] [ ][ ]TT
16363632 V|0|0|0G ×××= : is a 24x3 coefficient matrix. 

 

[ ] [ ] [ ] [ ] [ ][ ]T6666
T

4661 0|0|W|IH ×××= : is a 24x6 coefficient matrix. 
 
[ ] [ ] [ ] [ ] [ ][ ]T666666662 I|0|0|0H ××××= : is a 24x6 coefficient matrix. 
 
A block diagram of the decomposed version (derived by considering the sub-matrices) of the 
overall model is given in Figure A-1.1. See appendix section 3. 
 
 
A.1.7 Measurement Model 

Equations (A-1.18) and (A.1.22) may be combined to give the overall measurement model: 
 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]1
n

1
s

1
d

1
b

1
76

1
7 vvvvxJz ++++=  (A-1.30) 
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Where: 
 

[ ] [ ] [ ] [ ] T
mmmzyx

TT1
5

T1
4

1
7 rqpaaaz|zz

mmm
=⎥⎦

⎤
⎢⎣
⎡= : is a 6x1 IMU (gyro + 

accelerometer) measurement vector. 
 

[ ] [ ] [ ] [ ]T
rqpzyx

TT1
g

T1
a

1
b bbbbbbbb

vvvvvvv|vv =⎥⎦
⎤

⎢⎣
⎡= : is a 6x1 IMU bias error vector. 

 

[ ] [ ] [ ] [ ]T
rqpzyx

TT1
g

T1
a

1
d dddddddd

vvvvvvv|vv =⎥⎦
⎤

⎢⎣
⎡= : is a 6x1 IMU drift error vector. 

 

[ ] [ ] [ ] [ ]T
rqpzyx

TT1
g

T1
a

1
s ssssssss

vvvvvvv|vv =⎥⎦
⎤

⎢⎣
⎡= : is a 6x1 IMU scale factor error 

vector. 
 

[ ] [ ] [ ] [ ]T
rqpzyx

TT1
g

T1
a

1
n nnnnnnnn

vvvvvvv|vv =⎥⎦
⎤

⎢⎣
⎡= : is a 6x1 IMU noise error vector. 

 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−−−−−−−−−−=

×××

×××

6326363

6363163

6
0|J|0|0

|||
0|0|J|0

J : is a 6x24 matrix. 

 
 
A.2. Linearised Airframe, Actuation and IMU Dynamics 

Equation (A1.30) defines the complete non-linear description of the full 6-DOF airframe 
model. These equations contain quadratic terms in states and will be classed as the quadratic 
dynamic model. This type of model is required when autopilot design is undertaken for a 
missile executing high g- or high angle of attack manoeuvres, and (u, v, w, p, q, r) are not 
small. A more detailed consideration of the algebraic structure of this type of dynamic 
systems is given in [4]. 
 
 
A.2.1 Linearised Aerodynamic Forces and Moments  

Assuming that X~ , Y~ , Z~ , L , M  and N are functions of ςηξ ,,w,v,u,r,q,p,w,v,u
...

 and using 
first order linearisation about the nominal values u0, v0, w0, p0, q0, r0, ξ0, η0 and ς0, we get: 
 



DSTO-TR-1990 
 

 
33 

[ ]

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡ +

=

o

o

o

rqpwvu

rqpwvu

rqpwvu

rqpwvu

rqpwvu

rqpwvu

1
3

NNN
MMM
LLL
Z~Z~Z~
Y~Y~Y~
X~X~X~

r
q
p
w
v
u

NNNNNN
MMMMMM
LLLLLL
Z~Z~Z~Z~Z~Z~
Y~Y~Y~Y~Y~Y~
X~X~X~X~X~X~

N
M
L
Z~
Y~

T~X~

u
ζΔ
ηΔ
ξΔ

Δ
Δ
Δ
Δ
Δ
Δ

Δ
Δ
Δ
Δ
Δ

ΔΔ

Δ

ςηξ

ςηξ

ςηξ

ςηξ

ςηξ

ςηξ

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

r
q
p
w
v
u

000NNN
000MMM
000LLL
000Z~Z~Z~
000Y~Y~Y~
000X~X~X~

wvu

wvu

wvu

wvu

wvu

wvu

&

&

&

&

&

&

&&&

&&&

&&&

&&&

&&&

&&&

Δ
Δ
Δ
Δ
Δ
Δ

 (A-2.1) 

 
This equation may be written as: 
 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]1
33

1
621

1
30

1
3 x

dt
dExVExEu ΔΔΔΔ ++=  

 
[ ] [ ] [ ] [ ] [ ] [ ] [ ]1

33
1

62
1
30

1
3 x

dt
dExExEu ΔΔΔΔ ++=  (A-2.2) 

 
Where: 
 

( )..Δ : denotes ‘small’ deviations from the normal steady-state condition  
(see Tables A-1.1 – A1-3): 
 

ςηξα
αα ,,w,v,u,r,q,p,w,v,u;
X~

X~
...

=
∂
∂

= ; ςηξα
αα ,,w,v,u,r,q,p,w,v,u;
Y~

Y~
...

=
∂
∂

=  

ςηξα
αα ,,w,v,u,r,q,p,w,v,u;
Z~

Z~
...

=
∂
∂

= ; ςηξα
αα ,,w,v,u,r,q,p,w,v,u;
L

L
...

=
∂
∂

=  

ςηξα
αα ,,w,v,u,r,q,p,w,v,u;MM

...
=

∂
∂

= ; ςηξα
αα ,,w,v,u,r,q,p,w,v,u;NN

...
=

∂
∂

=  

 
[ ] [ ]212 VEE = : is a 6x6 matrix. 
 

[ ] 0g;0T~ 1 == ΔΔ  
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[ ]
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E : is a 6x6 aero-derivative matrix. 
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E1 : is a 6x3 control-derivative matrix. 
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wvu

wvu

wvu

wvu

wvu

wvu
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&&&

&&&

&&&

&&&

&&&

&&&

: is a 6x6 aero-derivative matrix. 

 
 
A.2.2 Linearisation of the Quadratic State Vector  

It is easily verified the first order linearization of the quadratic state vector defined in section 
2.1. : 
 

[ ] [ ] [ ] [ ]T222
TT2

2
T2

1
2

3 rqrqprpqp|wqwpvrvpuruqx|xx =⎥⎦
⎤

⎢⎣
⎡=  

may be written as: 
 

[ ] [ ] [ ]1
34

2
3 xEx ΔΔ =  (A-2.3) 
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Where: 
 

[ ]
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⎥
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r2
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p
0
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u
0
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r
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p
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w
0
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0
u

0
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r
q
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w
0
v
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0
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0
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q
p
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0
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0
0
0
0
0
0
0
0
r
p
0
0

0
0
0
0
0
0
0
0
0
0
r
q

E : is a 12x6 matrix of steady state values. 

 
[ ] [ ] [ ] [ ]TTT1

2
T1

1
1
3 rqp|wvux|xx ΔΔΔΔΔΔΔΔΔ =⎥⎦

⎤
⎢⎣
⎡= : is a 6x1 linear Δ -state vector. 

 
 
A.2.3 Linearised Airframe, IMU, Actuator Model  

The ‘small’ perturbation model for the quadratic dynamic model of equation (A-1.29) may be 
written as: 
 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]1
s2

1
1

1
42

1
31

2
32

1
71

1
7 n

HgHuGuGxFxFx
dt
d νΔΔΔΔΔΔΔ +++++=   

  (A-2.4) 
 
Substituting for [ ]2

3xΔ  and [ ]1
3uΔ  from equations (A-2.2) and (A-2.3), gives us: 

 
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]1
s2

1
42

1
331

1
621

1
30142

1
71

1
7

n
HuG

x
dt
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d

νΔΔ

ΔΔΔΔΔ

++

++++=
 (A-2.5) 

 
Where: 
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These above matrices are all of dimension 24X6. See also the block diagram Figure A-1.2.  
Now, Equation (A-2.5)  
 

[ ] [ ] [ ] [ ] [ ] [ ] [ ][ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ][ ] [ ]

[ ] [ ]1
s2

1
762462462431

1
42

1
7216246240142

1
71

1
7

n
H

x
dt
d0|0|0|EGuG

xEG|0|0|EGEFxFx
dt
d

νΔ

ΔΔ

ΔΔΔ

+

++

++=

×××

××

(A-2.6) 

 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]1
s2

1
42

1
74

1
73 n

HuGxFxF
dt
d νΔΔΔΔ ++=  (A-2.7) 

 
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]1

s2
1

3
1
42

1
3

1
74

1
3

1
6 n

HFuGFxFFx
dt
d νΔΔΔΔ −−− ++=  (A-2.8) 

 
[ ] [ ] [ ] [ ] [ ] [ ] [ ]1

s3
1
43

1
75

1
7 n

HuGxFx
dt
d νΔΔΔΔ ++=  (A-2.9) 

 
 
Where: 
 
[ ] [ ] [ ]6246246243124243 0|0|0|EGIF ×××× −= : is a 24x24 coefficient matrix. 
 
[ ] [ ] [ ]21624624014214 EG|0|0|EGEFFF ××++= : is a 24x24 coefficient matrix. 

[ ] [ ] [ ] :FFF 4
1

35
−=  is a 24x24 coefficient matrix. 

 
[ ] [ ] [ ]2

1
33 GFG −= : is a 24x3 coefficient matrix. 

 
[ ] [ ] [ ]2

1
33 HFH −= : is a 24x3 coefficient matrix. 

 
Small perturbation model of the measurement model (see equation (A-1.30) may be written as: 
 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]1
n

1
s

1
b

1
b

1
76

1
7 vvvvxJz ΔΔΔΔΔΔ ++++=  (A-2.10) 

 
Δ : denotes small perturbation about nominal values. 
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Finally, linearising the output equation (A-1.11) gives us:  
 

[ ] [ ] [ ] [ ] [ ]1
30

1
3400

1
3

uLxEKJy ΔΔΔ ++=  (A-2.11) 

 
[ ] [ ] [ ] [ ] [ ]1

30
1
37

1
3

uLxJy ΔΔΔ +=  (A-2.12) 

 
Where: 
[ ] [ ] :EKJJ 4007 +=  is a 6x6 coefficient matrix. 
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A.3.  Decomposed State Space Models 

A.3.1 Nonlinear Model: 

Using the relationship established in the appendix section 1.4, we may write: 
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A.3.2 Linearised Model: 

Using the relationship established in the appendix section 1.4 and equations (A-2.2), (A-2.3) and (A-2.5), we may write: 
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                  (A3-2) 
Block diagrams for the decomposed versions for the nonlinear and the linearised models are given in Figures A-1.1 and A-1.2 respectively
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Table A-1.1. Longitudinal (Roll) Aerodynamic Derivatives and Coefficients: 

 
Derivatives Derivatives Normalised Coefficients 
Symbol Units Symbols Units Symbols Units 

uX  Nm-1 sec - - ( )xux QS/XC u =  m-1 sec 

vX  Nm-1 sec ( )vUXX =β  N ( )xx QS/XC ββ =  - 

wX  Nm-1 sec ( )wUXX =α  N ( )xx QS/XC αα =  - 

pX  N sec - - ( )xpx QS/XC p =   sec 

qX  N sec - - ( )xqx QS/XC q =   sec 

rX  N sec - - ( )xrx QS/XC r =   sec 

ξX  N - - ( )xx QS/XC ξξ =  - 

ηX  N - - ( )xx QS/XC ηη =  - 

ζX  N - - ( )xx QS/XC ζζ =  - 

uX &  Nm-1 sec2 - - ( )xux QS/XC u &&
=  m-1 sec2 

vX &  Nm-1 sec2 ( )vUXX && =β  N sec ( )xvx QS/XC v &&
=  m-1 sec2 

wX &  Nm-1 sec2 ( )wUXX && =α  N sec ( )xwx QS/XC w &&
=  m-1 sec2 

uL  N sec - - ( )xxul cQS/LC u =  m-1 sec 

vL  N sec - - ( )xxvl cQS/LC v =  m-1 sec 

wL  N sec - - ( )xxwl cQS/LC w =  m-1 sec 

pL  Nm sec - - ( )xxpl cQS/LC p =  sec 

qL  Nm sec - - ( )xxql cQS/LC q =  sec 

rL  Nm sec - - ( )xxrl cQS/LC r =  sec 

ξL  Nm - - ( )xxl cQS/LC ξξ =  - 

ηL  Nm - - ( )xxl cQS/LC ηη =  - 

ζL  Nm - - ( )xxl cQS/LC ζζ =  - 

uL &  N sec2 - - ( )xxul cQS/LC u &&
=  m-1 sec2 

vL &  N sec2 ( )vULL && =β  Nm sec ( )xxvl cQS/LC v &&
=  m-1 sec2 

wL &  N sec2 ( )wULL && =α  Nm sec ( )xxwl cQS/LC w && =  m-1 sec2 

 

* ( )22 Nm:U
2
1Q −= ρ ; ( )2

x m:S ; ( )m:cx  
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Table A-2.1. Lateral (Pitch) Aerodynamic Derivatives and Coefficients: 

 
Derivatives Derivatives Normalised Coefficients 
Symbol Units Symbols Units Symbols Units 

uY  Nm-1 sec - - ( )yuy QS/YC
u

=  m-1 sec 

vY  Nm-1 sec ( )vUYY =β  N ( )yy QS/YC ββ
=  - 

wY  Nm-1 sec ( )wUYY =α  N ( )yY QS/YC αα
=  - 

pY  N sec - - ( )ypy QS/YC
p

=   sec 

qY  N sec - - ( )yqy QS/YC
q

=   sec 

rY  N sec - - ( )yry QS/YC
r

=   sec 

ξY  N - - ( )yy QS/YC ξξ
=  - 

ηY  N - - ( )yy QS/YC ηη
=  - 

ζY  N - - ( )yy QS/YC ζζ
=  - 

uY &  Nm-1 sec2 - - ( )yuy QS/YC
u &&

=  m-1 sec2 

vY &  Nm-1 sec2 ( )vUYY && =β  N sec ( )yvy QS/YC
v &&

=  m-1 sec2 

wY &  Nm-1 sec2 ( )wUYY && =α  N sec ( )ywy QS/YC
w &&

=  m-1 sec2 

uM  N sec - - ( )yyum cQS/MC
u

=  m-1 sec 

vM  N sec - - ( )yyvm cQS/MC
v

=  m-1 sec 

wM  N sec - - ( )yywm cQS/MC
w

=  m-1 sec 

pM  Nm sec - - ( )yypm cQS/MC
p

=  sec 

qM  Nm sec - - ( )yyqm cQS/MC
q

=  sec 

rM  Nm sec - - ( )yyrm cQS/MC
r

=  sec 

ξM  Nm - - ( )yym cQS/MC ξξ
=  - 

ηM  Nm - - ( )yym cQS/MC ηη
=  - 

ζM  Nm - - ( )yym cQS/MC ζζ
=  - 

uM &  N sec2 - - ( )yyum cQS/MC
u &&

=  m-1 sec2 

vM &  N sec2 ( )vUMM && =β  Nm sec ( )yyvm cQS/MC
v &&

=  m-1 sec2 

wM &  N sec2 ( )wUMM && =α  Nm sec ( )yywm cQS/MC
w &&

=  m-1 sec2 
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Table A-3.1. Lateral (Yaw) Aerodynamic Derivatives and Coefficients: 

 
Derivatives Derivatives Normalised Coefficients 
Symbol Units Symbols Units Symbols Units 

uZ  Nm-1 sec - - ( )zuz QS/ZC
u

=  m-1 sec 

vZ  Nm-1 sec ( )vUZZ =β  N ( )zz QS/ZC ββ
=  - 

wZ  Nm-1 sec ( )wUZZ =α  N ( )zz QS/ZC αα
=  - 

pZ  N sec - - ( )zpz QS/ZC
p

=   sec 

qZ  N sec - - ( )zqz QS/ZC
q

=   sec 

rZ  N sec - - ( )zrz QS/ZC
r

=   sec 

ξZ  N - - ( )zz QS/ZC ξξ
=  - 

ηZ  N - - ( )zz QS/ZC ηη
=  - 

ζZ  N - - ( )zz QS/ZC ζζ
=  - 

uZ &  Nm-1 sec2 - - ( )zuz QS/ZC
u &&

=  m-1 sec2 

vZ &  Nm-1 sec2 ( )vUZZ && =β  N sec ( )zvz QS/ZC
v &&

=  m-1 sec2 

wZ &  Nm-1 sec2 ( )wUZZ && =α  N sec ( )zwz QS/ZC
w &&

=  m-1 sec2 

uN  N sec - - ( )zzun cQS/NC
u

=  m-1 sec 

vN  N sec - - ( )zzvn cQS/NC
v

=  m-1 sec 

wN  N sec - - ( )zzwn cQS/NC
w

=  m-1 sec 

pN  Nm sec - - ( )zzpn cQS/NC
p

=  sec 

qN  Nm sec - - ( )zzqn cQS/NC
q

=  sec 

rN  Nm sec - - ( )zzrn cQS/NC
r

=  sec 

ξN  Nm - - ( )zzn cQS/NC ξξ
=  - 

ηN  Nm - - ( )zzn cQS/NC ηη
=  - 

ζN  Nm - - ( )zzn cQS/NC ζζ
=  - 

uN &  N sec2 - - ( )zzun cQS/NC
u &&

=  m-1 sec2 

vN &  N sec2 ( )vUNN && =β  Nm sec ( )zzvn cQS/NC
v &&

=  m-1 sec2 

wN &  N sec2 ( )wULN && =α  Nm sec ( )zzwn cQS/NC
w &&

=  m-1 sec2 
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Figure A-1.1 Nonlinear (Quadratic) Airframe Model including Actuator and IMU 
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Figure A-1.2 Linearised Airframe Model Including Actuator  
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